Uso del aprendizaje automático para responder preguntas específicas del béisbol
Dada la naturaleza del juego en el béisbol, una gran parte de las lesiones ocurren en incidentes sin contacto, lo que significa que la necesidad de medir y controlar la carga del ejercicio ayudará a reducir este tipo de lesiones.
Con esto en mente, el equipo de análisis de Catapult ha implementado aprendizaje automático que aprovecha los miles de puntos de datos obtenidos con su OptimEye S5 dispositivo. Usando esos datos sin procesar y videos de juegos y entrenamientos profesionales, Catapult ha podido desarrollar algoritmos específicos de deportes que cuantifican el volumen y la intensidad de actividades como lanzar y batear.
Las primeras pruebas han demostrado una tasa de precisión superior a 90%, con la funcionalidad de aprendizaje automático que le permite mejorar con la mayor cantidad de datos que se le alimentan.
Reduciendo la lista de lesionados en MLB
Estudios en El Diario Americano de Ortopedia han demostrado que el número de asignaciones de la lista de inhabilitados (DL) y el número total de días de DL ha aumentado año tras año. Entre los jugadores lesionados en la lista de lesionados, los lanzadores se lesionan con mayor frecuencia y pasan más tiempo en la lista de lesionados en comparación con cualquier otra posición.
El equipo de análisis de Catapult se dispuso a cuantificar los movimientos que con mayor frecuencia conducen a estas lesiones por uso excesivo, con la teoría de que poder usar datos objetivos sobre el volumen y la intensidad en estos movimientos les dará a los practicantes el poder de controlar las cargas de entrenamiento.
La creación de un algoritmo de béisbol
Para cuantificar eventos como lanzamientos y swings de bate, un equipo supervisado algoritmo de aprendizaje automático fue entrenado para hacer coincidir los lanzamientos y los golpes de bate recopilados durante el entrenamiento con las lecturas del dispositivo OptimEye S5.
Específicamente, Catapult creó un algoritmo Random Forest basado en datos recopilados de sesiones de entrenamiento de varios equipos de béisbol, tanto profesionales como universitarios. Los datos de entrenamiento contienen lecturas de acelerómetro y giroscopio para más de 6000 eventos de lanzamientos, golpes de bate, o ninguno, para docenas de jugadores y varias posiciones.
Se introdujo un umbral en la carga del jugador para aislar los eventos explosivos de otros eventos como caminar. Esto asegurará que el algoritmo seleccione solo lanzamientos y golpes de bate similares a los de un juego.
Alrededor de cada uno de estos eventos, Catapult estudió las características obtenidas del acelerómetro tridimensional y el giroscopio tridimensional dentro de una ventana de dos segundos desde el evento: un segundo antes y un segundo después. Los ejemplos de características incluyen el valor máximo, la media y la desviación estándar para la lectura de los acelerómetros y los giroscopios.
Cada una de estas características se ingresó para el evento de interés, así como su clasificación como un lanzamiento, un golpe de bate o ninguno para construir un conjunto de entrenamiento para el algoritmo.
Resultados y discusión
Después de estar expuesto a una gran cantidad de ejemplos para cubrir muchos lanzamientos y golpes de bate, el algoritmo pudo lograr una precisión de más de 90% en la detección de lanzamientos y golpes de bate durante una sesión de entrenamiento. Los lanzamientos detectados con excelente precisión incluyen:
- Toril
- Lanzamiento del montículo al receptor
- Lanzamientos de calidad durante el calentamiento
- Lanzamientos de larga distancia durante el fildeo
- Columpios en la jaula o durante la práctica de bateo
La estimación conservadora refleja el hecho de que el algoritmo solo está configurado para contar lanzamientos y swings que son lo suficientemente difíciles como para parecerse a un juego (es decir, lanzamientos y swings de bate de "calidad"). La mayoría de los errores provienen de lanzamientos suaves al comienzo de la rutina que son demasiado suaves para ser contados.
Después de clasificar una sesión de entrenamiento en swings, lanzamientos o ninguno, el algoritmo calcula la carga total asociada con cada swing y lanzamiento del bate. A través de la interfaz, se pueden obtener varias cantidades, como la carga promedio del jugador o el tiempo promedio entre estas actividades, así como las bandas para cada lanzamiento o golpe de bate.
Las métricas de Catapult para lanzamientos y swings de bate permiten a los practicantes de béisbol controlar el volumen y la intensidad de los movimientos clave que conducen a lesiones por uso excesivo y cuestan millones de dólares a los equipos profesionales y universitarios cada año. Estas métricas tienen la capacidad de dictar el futuro de la periodización del entrenamiento del lanzador y el bateador para los entrenadores que desean una mayor transparencia sobre el efecto del entrenamiento en un entorno del mundo real.
¿Le interesa saber cómo Catapult puede responder a sus preguntas específicas sobre el deporte? Obtenga más información sobre nuestro análisis de rendimiento aquí.